

HS-NM5300 Datasheet

English Ver. 1.0

2008-6

Website: http://www.hschip.com

Email: support@hschip.com

Tel: +86-28-86127089

Fax: +86-28-86127039

Chengdu, China

Introduction:

HS-W5300 is a network module that integrated W5300 (TCP/IP + Ethernet MAC + Ethernet PHY), RJ-45 and other components. HS-NM5300 can be configured to work in multi operation mode, such as 8/16 data bus, internal PHY/external PHY, internal PHY operation mode etc. it provides an ideal option to carry out embedded network rapidly for engineers.

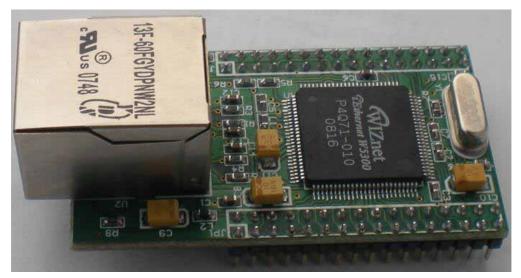


Fig.1 HS-NM5300A Picture

Features:

- Supports hardwired TCP/IP protocols : TCP,UDP, ICMP, IPv4, ARP, IGMPv2, PPPoE, Ethernet. Supports hybrid TCP/IP stack(software and hardware TCP/IP stack);
- Supports 8 independent SOCKETs simultaneously;
- High network performance : Up to 50Mbps;
- Supports PPPoE connection (with PAP/CHAP Authentication mode);
- Internal 128Kbytes memory for data communication (Internal TX/RX memory). More flexible allocation internal TX/RX memory according to application throughput. Supports memory-to-memory DMA (only 16bit Data bus width & slave mode);
- Embedded 10BaseT/100BaseTX Ethernet PHY. Supports auto negotiation (Full-duplex and half duplex). Supports auto MDI/MDIX(Crossover). Supports a external PHY instead of the internal PHY;
- Select 16/8 bit data bus width through jumper
- Supports 2 host interface mode(Direct address mode & Indirect address mode)
- 3.3V operation with 5V I/O signal tolerance;
- Interfaces with Two 2.0mm pitch 2 * 16 header pin;
- The module PCB dimension: 50mm*28mm

Please refer to the W5300 Datasheet when use HS-NM5300A module.

Pin Assignments:

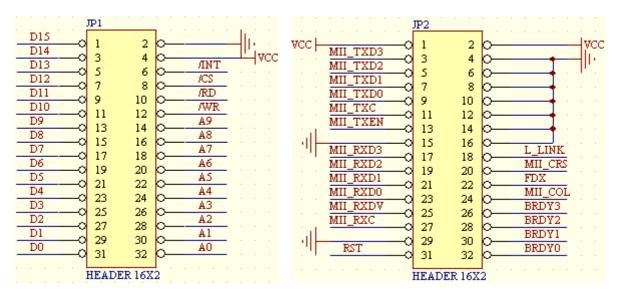


图 2 HS-NM5300A 排针引线图

JP1 Definition:

Pin Number	Definition	Description		
1, 3, 5, 7, 9, 11, 13, 15,	D15~D8	Data D15~D8 These are used for Read/Write operation of W5300 register		
17, 19, 21, 23, 25, 27, 29, 31	D7~D0	In case of using 8 bit data bus, they are driven as HIGH-Z Data D7~D0 These are used for Read/Write operation of W5300 register		
2	GND	Ground		
4	VCC	Power supply: 3.0~3.6V, typical value: 3.3V		
6	/INT	Interrupt output, active low		
8	/CS	Chip select signal input, active low		
10	/RD	Read enable signal input, active low		
12	/WR	Write enable signal input, active low		
14, 16, 18, 20, 22, 24, 26, 28, 30, 32	A9~A0	Address bus A9~A0		

JP2 Definition:

引脚号	定义	说明	
1, 2	VCC	Power supply, 3.0~3.6V, typical 3.3V	
4, 6, 8, 10,	GND	Power Ground	
12, 14, 15,			
16, 29			
3, 5, 7, 9	RXLED/MII_TXD3	At the Internal PHY mode, They are output signals of RXLED,	
	COLLED/MII_TXD2	COLLED, FDXLED and SPDLED	
	FDXLED/MII_TXD1	At the external PHY mode, they are output signals of MII_TXD3 \sim	
	SPDLED/MII_TXD0	MII_TXD0	
11	MII_TXC	At the external PHY mode, it is Transmit Clock Input	
13	TXLED/MII_TXEN	D/MII_TXEN At the Internal PHY mode, it is TXLED	
		At the external PHY mode, it is Transmit Enable	
17, 19, 21,	MII_RXD3	At the external PHY mode, they are input signals of MII_RXD3 \sim	
23	MII_RXD2	MII_RXD0	
	MII_RXD1		
	MII_RXD0		
25	MII_RXDV	At the external PHY mode, it is Receive Data Valid	
27	MII_RXC	At the external PHY mode, it is Receive Clock input	
18	L_LINK	It indicates the link states of Media (10/100M)	
20	MII_CRS At the external PHY mode, It is signal to notify the link tra		
		of the media. If carrier of media is not idle (carrier present),	
		it is asserted high.	
22	FDX	Full duplex select input at the external PHY mode	
24	MII_COL	IP collision detect input at the external PHY mode	
26, 28, 30,	BRDY3, BRDY2	SOCKET buffer ready indicator	
32	BRDY1, BRDY0		

Jumper Configuration:

There are 4 groups of jumper on the back of HS-NM5300A, shown as in Fig3. They are:

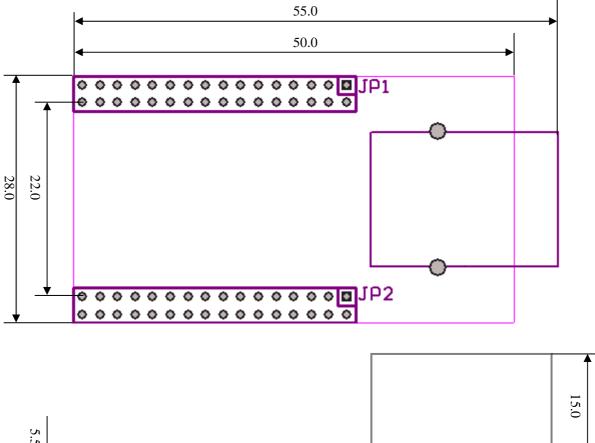
- 1. ROM11 and ROM12
- $\mathbf{2}$. ROM01 and ROM02
- 3 . RTM01 and RTM02
- 4. RB1 and RB2

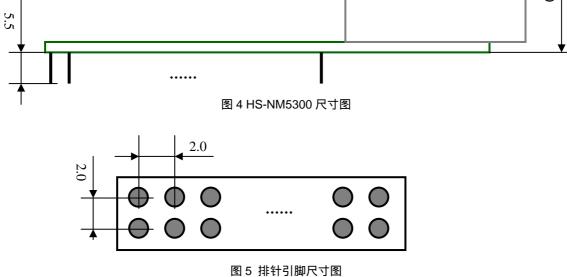
Fig 3 Jumper on the back of HS-NM5300A

These jumpers are defined as following:

1. The width of Data Bus

RB1	RB2	Description	
Shorted	Disconnected	Select 8 bit Data bus	
Disconnected	Shorted	Select 16 bit Data Bus	


2. Select PHY


RTM01	RTM02	Description		
Shorted	Disconnected	Select internal PHY		
Disconnected Shorted		Select external PHY, use crystal clock		

3. 内部以太网 PHY 运行选择:

ROM01	ROM02	ROM11	ROM12	Description
Shorted	Disconnect	Shorted	Disconnect	Ethornot auto pogotiation
	ed		ed	Ethernet auto negotiation
Disconnect	Shorted	Shorted	Disconnect	Ethernet 100Base-TX full duplex auto
ed	Shorteu	Shorted	ed	negotiation
Shorted	Disconnect	Disconnect	Chartad	Ethernet 10Base-T full duplex auto
	ed	ed	Shorted	negotiation

